
ON ACQUISITION OF PROGRAMMING

Ashok T. Amin

 88-16438
KNOWLEDGE

Computer Science Department

The University of Alabama in Huntsville

Huntsville, Alabama 35899

ABSTRACT Acquisition and judicious incorporation of

programming knowledge into the programming environment

is essential to support development of correct programs

and thereby enhance the programmer productivity. A pro-

gram may be viewed as an outcome of interaction between

a programmer and his/her programming environment. The

interaction may be supported at the program generation

level, program design level, or at the program specifi-

cation level. The higher is the l_vel of interaction

supported the greater is the knowledge base required to

support this interaction, and greater are the program-

ming skills required of the programmer. Knowledge ac-

quisition techniques used range from formal-based on

mathematical properties of programs to empirical, and

from generic to application domain specific. In this

paper, we review the recent developments in this area

and suggest future directions.

I. INTRODUCTION

Knowledge based programming environments have an impor-

tant role to play in facilitating the development of correct pro-

grams. Such environments can provide for rapid development of

correct programs by guiding the programmer through the maize of

design decisions and implementation alternatives, and automating

low level programming tasks. Developments in this area may lead

ultimately to Automatic Programming Systems.

The goal of automatic programming is to automate all the

phases of the program development - namely, program specifica-

tion, design, and implementation. There are two approaches to

realization of an Automatic Programming System. In one, the sys-

tem proceeds with given correct specification of the program and

through application of an appropriate sequence of valid transfor-

mations transforms the specification into a program. The program

specification may be assumed to have been provided by the pro-

grammer or developed by the programmer through interactions with

the system. As opposed to this, the other approach is more of an

evolutionary approach, and is based on extending the automation

of programming tasks from lower levels to higher levels. In ei-

ther case, acquisition and codification of programming knowledge

is an essential task. It has been observed [3] that large body of

programming knowledge exists and that codification of this

knowledge remains most limiting factor to ultimate development of

automatic programming systems.

Knowledge acquisition and incorporation for an evolving

427
PRECEDING PAGE I_LANK NOT FII_-7_D



discipline is more problematic than for a mature one. One finds

that programming is variously described as art, craft, and sci-

ence. In the sense that parts of programming process are at

various stages of evolution each of the terms may reasonably be

used to describe the programming process. The evolving formali-

zation of programming process by Computer Scientists and the the

proven and empirical techniques of programming craft used by the

practitioners must be used as the sources of programming

knowledge and the knowledge from these source be suitable in-

tegrated to realize the gains in automation of programming pro-

cess.

To further complicate the matter, not only the knowledge

bases relevant to various phases of program development need to

be integrated, but knowledge bases that address the development

of correct programs must be integrated with one that addresses

the efficiency concerns in a manner that changes in the one has

minimal impact on the other [6]. Often specialization of a pro-

gramming system to a specific application opens up opportunities

for improving the programming process for that application by

judicious incorporation of domain specific knowledge [I]. An im-

portant aspect of any system is to allow for acquisition and in-

tegration of additional knowledge and refinement of existing

knowledge during its use by the programmer.

2. PROGRAMMING KNOWLEDGE

Fundamental research in Computer Science deals with for-

mal approaches to understanding of programs and the programming

process. The knowledge so gained may be used to develop explora-

tory techniques for program development. Those techniques that

gain acceptance and wide usage then become proven techniques for

program development. There are a number of issues that require

more empirical approaches for its resolution. Such issues relate

to reliability, maintainability, efficiency, human interfaces,
etc.

There are two views in relation to approaches to automat-

ic program development. One assumes that formal approaches will

ultimately permit automatic development of correct programs. The

other view accepts that writing correct programs is hard, and

therefore it is accepted that programs may contain errors and

that through iterative process of error detection and correction

one arrives at a program in which one has high degree of confi-

dence that it is correct. It may be noted that these two ap-

proaches complement each other in the sense that formal ap-

proaches are necessary if we are to build correct programs for

critical applications, and at the same time empirical approaches

are necessary if we are to develop any worthwhile program of rea-

sonably large size in timely fashion.

Formal Approaches:

Formal approaches to the understanding of the programs

and the programming process demands high degree of profficiency

428



in the creative application of mathematical skills. Formal ap-

proaches do not always yield results that may be used to develop

practical techniques. Often techniques based on formal ap-

proaches are time consuming particularly when it is to be carried

out manually. Further, since these techniques require special-

ized skills, they are subject to subtle and hence hard to detect

errors. For example, it may be very difficult to detect error in

an erroneous proof of program correctness. None the less

knowledge gained from formal inquiries have yielded many useful
results.

Laws of programming [5] and formal program design methods

[4] are examples of formal approaches to the understanding of

programs and the programming process, respectively. It is inves-

tigations of these types that will allow us to resolve the ques-

tions of program equivalence by suitable representation of pro-

grams in a canonical form. And allow development of programs

through better understanding of issues that are important at

various stages of program design and to the development of

languages with suitable degrees of freedom to represent a program

through various stages of development.

Exploratory approaches to program development are typi-

cally based on some break through in the formal understanding of

programs and the programming process. Formal representation of

program design information in Programmer's Apprentice represents

an exploratory technique [7] for use in semi-automatic program

development. Acceptance and wide usage of these techniques leads

to proven techniques which then become common knowledge.

Common Knowledge:

Vast body of programming knowledge exists in the form of

textbooks and reference books, especially related to algorithms,

data structures, and structured programming. The impact of the

developments in these areas from formal inquiries in 50's and

60's is now visible in development of programming languages and

programmer training. While programming language can not enforce

structured programming it can and have facilitated development of

structured programs by providing suitable constructs and support

for abstract data types. It is believed that advances in pro-

gramming will require development of languages that support the
major paradigms of their user communities [2].

The paradigms for algorithm development, such as divide-

and-conquer, provide a systematic approach to development of al-

gorithmic solution to a problem. A unified view of application of

this paradigm for the development of algorithms and its implemen-

tations for a class of problems, say sorting, is needed to extri-

cate the technique in details enough for the knowledge to be

represented in machine processable form [3,8]. To this end, one

can recognize that merge sort, quick sort, insertion sort, and

selection sort are examples of divide-and-conquer paradigm with

differences in the methods of partitioning of the problem and the

composition of the solution from the partial solutions. In addi-

tion, a number of paradigms need to be developed for the tech-

429



niques of implementation to be suitably represented,

recursion-to-iteration transformation, etc.

such as

Empirical Approaches:

There are a number of issues of practical importance that

defy formal approaches and in fact may not be properly be sub-

jects of formal inquiry. For example, when do we stop testing a

program? A practical answer is when the resources allocated for

the testing have been exhausted. None the less, formal inquiries

on this questions have yielded results that are awfully inade-

quate. Other issues involve human interfaces, or measures of

complexity. It has been remarked that programming deals with

managing complexity. There are rules, based on psychological

studies, that say a human can deal with seven things at a time. A

number of software methodologies use this as a guide to help

manage complexity. How large a problem should be for a technique

to more efficient than a simpler one? A number of implementation

issues have this characteristics. In such cases it much better

to arrive at a resolution based on interaction with the user.

The studies involving observations of expert programmer at work

also yield useful information involving 'good' programming prac-
tices [9].

Acquisition and Incorporation:

The approach used for knowledge acquisition and incor-

poration is important. Knowledge bases that addresses specific

aspects of programming must be integrated in a manner that allows

common interface without making it more complex to use or update.

The knowledge must be represented so that its refinement and ad-

dition can be accommodated gracefully. Lastly, means must be pro-

vided so that user may add and modify the programming knowledge.

3. CONCLUSION

For the evolving discipline of programming, acquisition

of programming knowledge is a difficult issue. Common knowledge

results from the acceptance of proven techniques based on results

of formal inquiries into the nature of the programming process.

This is a rather slow process. In addition, the vast body of

common knowledge needs to explicated to the low enough level of

details for it to be represented in the machine processable

form. It is felt that this currently impediment to the progress

of automatic programming. Importance of formal approaches can

not be overestimated since its contributions lead to quantum jump
in the state of the art.

REFERENCES

[I] D. Barstow, "Domain-Specific Automatic Programming,"

IEEE-TSE, 11.11(1985)1321-1336.

[2] R.W. Floyd, "The Paradigms of Programming," Communications

430



[3]

[4]

[51

[6]

[7]

[8]

[9]

of ACM, 22.8(1979) 455-460.

C. Green and D. Barstow, "On Program Synthesis Knowledge,"

Artificial Intelligence, 10(1978) 241-279.

C. A. R. Hoare, "An Overview of Some Formal Methods for

Program Design," COMPUTER, 20.9(1987) 85-91.

C. A. R. Hoare, I. J. Hayes, et.al, "Laws of Programming,"

CACM, 30.8 (1987 672-686.

E. Kant, "Efficiency in Program Synthesis" UMI Research

Press, 1981.

C. Rich, "A Formal Representation For Plans In The

Programmer's Apprentice," Proc. of Seventh International

Conference on Artificial Intelligence, 1981.

D. R. Smith, "Top-Down Synthesis of Divide-and-Conquer

Algorithms," Artificial Intelligence, 27(1985) 43-96.

E. Soloway and K. Ehrlich, "Empirical Studies of Programming

Knowledge," IEEE Trans. of Software Engineering, 10.5(1984)
595-609.

431




